Algorithms for Pavement Distress Classification by Video Image Analysis

نویسنده

  • ADOLFO ACOSTA
چکیده

A fundamental component of computer-based video image analysis for pavement distress evaluation is identification of the type of distress from geometric and textural properties of an area of interest identified during image analysis. This study describes the algorithms used to identi_fy and classify the most common pavement distress types once a possible distress region is identified on an image. The classification is accomplished in three steps. First, geometric and textural features are calculated for a region of interest. Next, the features of that region are used to determine whether any other regions in an image are actually part of the same pavement distress. Finally, the extracted image features are used with a decision tree to identify the specific pavement distress type, its severity, and its extent. The features and decision trees have been tested on several thousand pavement images and the system that contains the decision tree has been used successfully by the Ohio Department of Transportation since May 1994.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Second-Order Statistical Texture Representation of Asphalt Pavement Distress Images Based on Local Binary Pattern in Spatial and Wavelet Domain

Assessment of pavement distresses is one of the important parts of pavement management systems to adopt the most effective road maintenance strategy. In the last decade, extensive studies have been done to develop automated systems for pavement distress processing based on machine vision techniques. One of the most important structural components of computer vision is the feature extraction met...

متن کامل

PAVEMENT DISTRESS EVALUATION USING 3D DEPTH INFORMATION FROM STEREO DEVELOPMENT of a COMPUTER for the EVALUATION of PAVEMENT by the PASER METHOD

The focus of the current project funded by MIOH-UTC for the period 9/1/2010-8/31/2011 is to enhance our earlier effort in providing a more robust image processing based pavement distress detection and classification system. During the last few decades, many efforts have been made to produce automatic inspection systems to meet the specific requirements in assessing distress on the road surfaces...

متن کامل

Impact of Image Resolution on Pavement Distress Detection Using Picucha Methodology

An accurate and regular survey of the road surface distresses is a key factor for pavement rehabilitation design and management, allowing public managers to maximize the value of the continuously limited budgets for road improvements and maintenance. Manual pavement distress surveys are labor-intensive, expensive and unsafe for highly-trafficked highways. Over the years, automated surveys using...

متن کامل

Automatic road crack detection and classification using image processing techniques, machine learning and integrated models in urban areas: A novel image binarization technique

The quality of the road pavement has always been one of the major concerns for governments around the world. Cracks in the asphalt are one of the most common road tensions that generally threaten the safety of roads and highways. In recent years, automated inspection methods such as image and video processing have been considered due to the high cost and error of manual metho...

متن کامل

Pavement distress image recognition using k-means and classification algorithms

Road pavement maintenance today relies mainly on manual pavement condition inspection and distress rating; however, this manual method is costly, labour-intensive, time-consuming, and dangerous to inspectors and may affect traffic flows. Moreover, such method is very subjective and may have a high degree of variability, being unable to provide meaningful information. Additionally, since using t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015